Что производят из диоксида титана. Области применения диоксида титана. Основные применения диоксида титана

Производство любой пищевой продукции в наше время не обходится без специальных добавок. Ведь с помощью этих химических соединений продлевается срок годности товара, улучшается его цвет, консистенция и запах. Что же собой представляет диоксид титана? Последнее время вышеуказанную можно часто встретить в составе многих рыбных, мясных и хлебобулочных изделий, конфет и белого шоколада.

Краткое описание диоксида титана

Е171 является добавкой, которая представляет собой некие бесцветные кристаллики, которые при нагревании желтеют.

Данное химическое соединение получают сульфатным (из ильменитового концентрата) или же хлоридным (из тетрахлорида титана) методами.

Характеристика Е171:

  • не токсичен;
  • не растворяется в воде;
  • обладает химической стойкостью;
  • высокая отбеливающая способность;
  • атмосферная и влагостойкость.

Краситель диоксид титана не влияет на вкус продукта. Его основное задание - придать ему белоснежный вид.

Применение диоксида титана

Данное активно используется в таких отраслях промышленности, как:

  • производство лакокрасочной продукции, пластмассы и бумаги;
  • пищевая промышленность.

Также применяется диоксид титана в косметике. Его добавляют в мыло, крема, аэрозоли, помады, различные пудры и тени.

Е171 в пищевой промышленности используется для производства быстрых завтраков, порошкообразных продуктов, молока сухого, крабовых палочек, майонеза, жевательных резинок, белого шоколада, конфет.

Также Е171 используется для отбеливания муки. Необходимое количество красителя вносят вместе с мукой в массу и тщательно перемешивают тесто для максимального распределения вещества. Дозировка составляет: от 100 до 200 граммов на 100 кг муки.

Диоксид титана применяют и в мясоперерабатывающей промышленности. Ведь вышеуказанное химическое соединение имеет отличную диспергируемость. Кроме того, Е171 отбеливает паштеты, шпик и другую деликатесную продукцию.

Также вышеуказанная добавка используется в производстве консервов растительных для осветления потертого хрена.

Диоксид титана: вред

Исследования, которые проводились учеными по поводу негативного влияния вышеуказанной пищевой добавки, подтверждают: Е171 не растворяется в соке желудка и не всасывается через стенки кишечника организмом. Поэтому, согласно мнению представителей официальной медицины, диоксид титана не оказывает негативного влияния на здоровье человека. На основании этих данных разрешается применять вышеуказанную пищевую добавку в производстве продуктов питания (СанПин 2.3.2.1293-03).

Но все-таки существуют предположения о потенциальной опасности, которую может нести диоксид титана. Вред его ученые исследовали следующим образом: проводились испытания на крысах, которые вдыхали этот порошок. Результаты анализов: диоксид титана является канцерогенным для человека и может вызвать развитие онкологии.

Некоторые ученые утверждают, что добавка Е171 способна разрушать организм человека на клеточном уровне. Эта информация подтверждается только опытами на грызунах.

Несмотря на утверждение представителей официальной медицины, что диоксид титана является безвредным, все-таки опыты над ним продолжаются. Специалисты не рекомендуют превышать дозировку пищевой (1 % в день) людям с ослабленным иммунитетом.

Диоксид титана в косметике

Вышеуказанная добавка применяется в производстве средств ухода за кожным покровом. Дело в том, что диоксид титана обладает следующим свойством: уменьшает негативное воздействие лучей солнца на кожу человека. То есть Е171 является ультрафиолетовым фильтром.

Химическая нейтральность - еще одно, не менее важное свойство данного химического соединения. Это означает, что диоксид титана не вступает в реакцию с кожным покровом и не вызывает аллергии.

Для производства косметических средств используется исключительно высокоочищенный Е171, с мелкодисперсной структурой.

Диоксид титана - добавка, которая активно применяется как в пищевой промышленности, так и производстве косметики и другой продукции. Соблюдение дозировки Е171 не приносит вреда здоровью. Превышение количества вышеуказанного химического соединения может спровоцировать серьезные проблемы в человеческом организме.

Диоксид титана TiO2 полиморфен, он кристал­лизуется в двух сингониях: брукит - в ромбической, рутил и анатаз - в тетрагональной, но последние различаются строением кристаллической решетки. В обоих случаях каждый атом титана находится в центре октаэдра и окружен 6 атомами кислорода. Пространственное же рас­положение октаэдров разное: в анатазе на каждый октаэдр при­ходится 4 общих ребра, в рутиле только 2. Элементарная ячейка анатаза состоит из четырех молекул, а рутила только из двух:

Благодаря более плотной упаковке ионов в кристаллах рутил пре­восходит анатаз по стабильности, плотности, твердости, показателю пре­ломления, диэлектрической постоянной и обладает пониженной фотохими­ческой активностью. При температуре 915 0C ‑ 950 0C анатаз переходит в рутил, но полученный при этом рутил отличается высокой абразивностью и низкой дисперсностью. В 1949 г. была найдена возможность управления кристаллизацией введением рутилизирующих добавок и зародышей. Ионы Zn2+, Mg2+, Al3+, Sn2 + являются стабилизаторами рутильной формы, ионы SO42-, PO43 - - анатазной. В присутствии даже малых количеств соединений фосфора переход анатаза в рутил становится невозможным. Рутилизирующие за­родыши получают, обрабатывая гидратированный диоксид титана после пятой стадии промывки раствором едкого натра. При этом образуется тетратитанат натрия Na2Ti4O3, который обрабатывают соляной кислотой, и пептизируют продукт гидролиза, предварительно освобожденный от ионов SO42-. Такие зародыши вводятся перед прокаливанием.

Рутил, прокаленный при температуре около 10000C и содержащий примеси Fe, Cr, Ni, Mn, проявляет свойство фототропии. При освещении он становится коричневым, в темноте вновь светлеет. Это объясняется окислением примесных металлов в высшие оксиды вследствие выделения кислорода при освещении ТiO2 с деформированной решеткой.

В чистом виде диоксид титана, особенно в анатазной форме, обладает высокой фотохимической активностью, что вызывает разрушение лакокрасочной пленки («меление») и выцветание органических пигментов. Модифицирование поверхности частиц диоксида титана гидроксидами Al, Si, Zn резко уменьшает фотохимическую активность.

Диоксид титана химически инертен, нерастворим в слабых кислотах и щелочах и органических растворителях. Не ядовит, ПДК в воздухе рабочих зон 10 мг/м3. Может применяться со всеми видами пленкообразователей и растворителей. Пригоден для водоэмульсионных, воднодисперсионных и порошковых красок. Пигментный диоксид титана также широко используется для окрашивания изделий из резины, пластмасс, линолеума, бумаги и химических волокон. Кроме пигментного диоксида титана, содержащего 82-95 % (масс.) TiO2, вырабатывается диоксид титана для твердых сплавов, стекол, керамики с более высоким содержанием TiO2.

Сырье, для получения диоксида титана. Для переработки в пигментный диоксид титана используются минералы: природный рутил, содержащий 92-95 % (масс.) TiO2 и примесь Fe2O3, придающую ему красный цвет (рутил красный); ильменит FеО*ТiO2 или - арканзит Fe2O3*3ТiO2; титаномагнетиты,
состоящие из зерен ильменита и магнетита и содержащие 8-12 % (масс.) TiO2.

В чистом виде титансодержащие минералы встречаются редко. Для освобождения от примесей других минералов и пустой породы измель­ченные руды подвергают магнитному и другим видам обогащения и получают концентраты примерного состава, % (масс.):

Технология производства пигментного диоксида титана. Переработка титановых концентратов и шлаков в пигментный диоксид титана имеет целью не только освобождение от примесей, но и придание TiO2 требуемой кристаллической формы, дисперсности, адсорбционных свойств и подав­ление фотохимической активности. Для получения диоксида титана приме­няют два способа: сернокислотный - для концентратов, содержащих более 40 % TiO2, и хлоридный,- экономически выгодный только для переработки концентратов, содержащих не менее 80 % TiO2 (так как получаемые отходы FeCl3 не находят применения).

Сернокислотный способ. Это тонкий и сложный процесс, состоящий из трех основных стадий и ряда вспомогательных операций (см. схему 2.1).

1. Первой стадией является разложение тонкоизмельченного
титан-содержащего
концентрата
85-92 %-ной серной кислотой при 180-220 0C и непрерывном перемешивании реакционной массы сжатым воздухом с получением прозрачного раствора титанилсульфата TiOSO4. При этом протекают следующие экзотермические реакции разложения:

а также аналогичные реакции с оксидами Mn, Ca, Al и другими примеся­ми. Все реакции протекают бурно после предварительного нагрева с выделением большого количества паров воды, H2SO4, SO3 и SO2, которые улавливают­ся в скруббере, орошаемом водой. Реакцию разложения проводят периоди­ческим методом.

Многочисленные попытки применения реакторов непрерывного действия с механическим перемешиванием не оправдали себя как технически, так и экономически, так как наблюдался большой коррозионный и эрозионный износ аппаратуры.

Кислые растворы сульфатов титана, железа и других элементов, присутствующих в сырье, имеют сложный коллоидно-химический состав, изменяющийся в зависимости от содержания кислоты, температуры, времени выдержки.

При проведении реакции разложения реактор непрерывно продувают сжатым воздухом, который перемешивает суспензию, а затем при кристаллизации солей и застывании плава делает его пористым. После окончания реакции разложения и охлаждения плава выход по титану составляет 96-98 %. В реактор подают воду (из расчета получения раствора с содержанием TiО2 примерно 120 г/л) и все водорастворимые соли переходят в раствор.

Для последующего удаления сульфата железа(II) из раствора титанилсульфата проводят восстановление ионов Fe3+ до Fe+, для чего в реактор добавляют чугунную стружку. В кислой среде проходит реакция восстановления Fe3+ -->- Fe2+ выделяющимся водородом. Одновременно восстанавливается и небольшое количество (3-5 г/л) Ti4+ до Ti3+. Соединения Ti3+ являются сильными восстановителями, они исключают возможность повторного окисления воздухом Fe2+ и этим предотвращают адсорбцию ионов Fe3+ на диоксиде титана, придающих ему желтую окраску.

Кислые растворы титанилсульфата, сульфатов железа, алюминия, марганца отстаивают или отфильтровывают от шлама, состоящего из остатков неразложившейся руды, диоксида кремния, нерастворимого сульфата кальция, а затем осветляют, отделяя коллоидные частицы коагуляцией с помощью флокулянтов - высокомолекулярных ПАВ. После вакуум-кристаллизации железный купорос FeSO4*7H2O отделяют от раствора центрифугированием или фильтрованием. Железный купорос является побочным продуктом производства.

2. Важнейшей стадией, определяющей пигментные свойства диоксида титана, является термический гидролиз титанилсульфата, протекающий по реакции:

Это уравнение не раскрывает сложного хода реакции гидролиза и полного состава получаемых веществ. Титанил-ионы в водном растворе образуют гидроксокомплексы I, II, в которых атомы титана связаны через оловые мостики. При термическом гидролизе происходит переход оловых мостиков в оксо-связи:

Такой продукт гидролиза по брутто-составу примерно соответствует TiO(OH)2 и его называют метатитановой кислотой
(MTK). Фактически часть основных групп в полиионе замещены на сульфогруппы, которые частично сохраняются в виде концевых групп и в продукте гидролиза, имеющем полимерное строение и называемом гидратированным диоксидом титана (ГДТ): TiO2*0,71H2O*0,07SO3.

Для ускорения гидролиза и повышения выхода, а главное, для получения частиц ГДТ определенного размера в предгидролизный раствор вводят специально подготовленные зародыши. Для получения зародышей отбирают 0,3-0,5 % (масс.), в расчете на TiO2, предгидролизного кислого раствора в отдельный реактор, где при непрерывном перемешивании его нейтрализуют раствором NaOH до рН = 3. При этом выпадает коллоидный осадок гидрозоля гидроксида титана, после 1-2-часовой выдержки при 60-80 0C переходящий в микрокристаллические зародыши переменного состава. Условия приготовления зародышей определяющее влияют на процесс гидролиза и качество пигмента.

Так как в растворах с концентрацией TiO2 < 200 г/л рано наступает коагуляция продуктов гидролиза, что препятствует кристаллохимическому росту частиц, предгидролизные растворы предварительно концентрируют до содержания в них TiO2 200-240 г/л. Это осуществляют в вакуум-выпарных аппаратах при 60 0C. Гидролиз проводят в реакторах, снабженных мешалкой и змеевиками для обогрева и охлаждения. Подготовленный предгидролизный раствор нагревают, вводят зародыши, доводят до кипения (105-1100C), разбавляют водой и продолжают кипятить до 96-97 %-ного превращения титанилсульфата в ГДТ, который отделяют от раствора фильтрованием и промывают водой. Сульфаты в кислой среде не гидролизуются и остаются в растворе серной кислоты.

Осажденный ГДТ подвергают 3-6-кратной промывке, на последних стадиях деминерализованной водой. Однако полностью отмыть прочно адсорбированные ионы Fe3+ не удается. Для удаления оставшихся ионов Fe3+ проводят «отбелку»: ионы Fe3+ восстанавливают водородом до Fe2+, для чего вводят порошок металлического цинка и химически чистую серную кислоту. После отбелки проводят солевую обработку, добавляя для получения рутильной формы TiO2 до 3 % (масс.) ZnO и специально приготовленные рутилизирующие зародыши. Для получения анатазной формы TiO2 вводят минерализатор К2СО3, облегчающий удаление воды при прокаливании, и 0,5 % фосфорной кислоты, стабилизирующей анатазную форму.

3. Следующей стадией является
прокаливание ГДТ с получением диоксида титана:

При прокаливании вместе с водой удаляется и SO3 [состав ГДТ TiO2*0,71H2O*0,07SO3].

Прокаливание проводят в трубчатых вращающихся печах при температуре 850-900 0C, время пребывания продукта в печах - около 8 ч. Выходящие из печей дымовые газы подвергаются мокрой очистке от SO3, Н2SO4 и уносимой газами пыли ТiO2 в скрубберах, орошаемых аммиачной водой. Полученный диоксид титана охлаждают и размалывают.

4. Заключительными операциями получения пигментного диоксида титана являются мокрый размол, классификация частиц по размерам и поверхностная обработка (см. схему). Предварительно измельченный в сухом виде диоксид титана репульпируют в очищенной воде (300- 350 г/л TiO2), добавляют силикат натрия и щелочь и подвергают

непрерывному мокрому размолу в шаровой или в бисерной мельнице. Вытекающая из мельницы пульпа направляется для классификации частиц в гидроциклоны или центрифуги. Отделенные частицы размерами более 1 мкм возвращают на повторный размол.

Пульпу с частицами менее 1 мкм подвергают солевой обработке растворами Al(SO4)3, NaOH, Na2SiO3, ZnSO4и коагулируют. Осадок TiO2 отфильтровывают и отмывают от ионов Na + и SO42-. В зависимости от дальнейшего назначения диоксид титана обрабатывают модификаторами - ПАВ или кремнийорганическими соединениями. Полученный пигментный диоксид титана сушат, подвергают микронизации и упаковывают. На предприятия, производящие воднодисперсионные лакокрасочные материалы, диоксид титана перевозят в цистернах в виде 65-70 %-ной водной пасты. Операция сушки в технологическом процессе получения TiO2 таким образом исключается.

Недостатком сернокислотного способа является большой расход серной кислоты - 2,1 т на 1 т диоксида титана. Вся серная кислота превращается в отходы: кислые шламы, железный купорос, разбавленную и загрязненную «гидролизную» кислоту и очень разбавленные кислые воды от промывки железного купороса, ГДТ и газовых выбросов.

Железный купорос, получаемый в количестве 3,2-3,6 т на 1 т TiO2, используется в производстве желтых и красных железо-оксидных пигментов и как коагулянт при очистке водопроводной воды. Избыток купороса прокаливают с известью и получают «окатыши» - сырье для доменной выплавки чугуна. Выделяющиеся газы SO2 и SO3 снова превращают в серную кислоту.

Разбавленную 15-20 %-ную гидролизную кислоту концентрировать весьма трудно, так как имеющиеся в ней соли Al, Mg, Fe и другие образуют гелеобразные шламы. Гидролизную кислоту используют для производства удобрения - суперфосфата.

Таким образом, производство диоксида титана сернокислотным способом представляет собой сложный комплекс производств серной кислоты, суперфосфата, железооксидных пигментов и металлургического сырья, а иногда и выплавки чугуна, и все же большое количество шлама и сильно разбавленных кислых промывных вод остается неиспользованным.

Хлоридный способ. Получение пигмента по этому способу основано на хлорировании брикетов из высококонцентрированного титансодержащего сырья с восстановителем коксом в реакторе непрерывного действия при 800 0C:

Одновременно хлорируются и примеси Fe(II и III), Al, Si. Тетрахлорид титана TiCI4 представляет собой жидкость с температурой кипения 1350C и температурой замерзания - 230C. Трихлорид железа - твердое вещество с температурой плавления 282 0C и температурой кипения 3150C. Дихлорид железа FeCl2 - также твердое вещество, возгоняется при 672 0C. Большая разница в температурах кипения хлоридов титана и железа позволяет двухкратной ректификацией разделять продукты хлорирования с получением TiCl4 высокой степени чистоты и отходов SiCl4, FeCl3. Поэтому для хлоридного способа приемлемо сырье только с очень высоким содержанием TiO 2 (не менее 85 %). На воздухе TiCl4 сильно дымит, гидролизуясь в Ti(OH)4, поэтому вся аппаратура должна быть герметичной и стойкой к действию хлора.

Чистый TiCl4 перерабатывается в TiO 2 по одному из двух следующих методов.

1. Окисление
TiCl 4 воздухом, (разбавленным азотом для снижения температуры):

Реакция проводится в специальной горелке. Хлор, разбавленный азотом, подвергается регенерации и возвращается в процесс хлорирования. Прогрессивным способом является сжигание TiCl4 в плазмотроне, где кислород воздуха предварительно ионизируют нагреванием до 2000 0C с помощью пусковой вольтовой дуги и постоянного высокочастотного электрообогрева. Полученные частицы TiO 2 подвергают резкому охлаждению - «закалке» во избежание их роста, агрегации и спекания.

2. Гидролиз перегретым до 4000C водяным паром по реакции:

Образующийся в этом процессе анатаз быстро переходит в рутил. Парофазный гидролиз мало применяется, так как необходимо регенерировать хлор из HCl, что требует больших затрат.

Полученный обоими способами высокодисперсный диоксид титана отделяется от реакционных газов в электрофильтрах. Для освобождения от адсорбированных Сl2 или HCl проводится дехлорирование продувкой перегретым паром. Вся аппаратура хлоридного способа производства TiO 2 изготовляется из чистого. металлического титана, поэтому продукт не загрязняется и отличается высокой белизной и хорошей разбеливающей способностью. В процессе окисления в зону реакции могут быть введены модификаторы - алюминий и кремний.

Хлоридный процесс производства TiCl4 характеризуется применением особо высокогерметичного оборудования и высокой культурой производства. Это необходимо, чтобы не допускать загрязнения окружающей среды хлором и другими отходами (FeCl2 и FeCl3).

В мировой практике хлоридным способом вырабатывается менее 30% TiO 2 но этот способ перспективен, поскольку связан также с получением из TiCl4 чистого металлического титана.

Благодаря своим свойствам сегодня диоксида титана используется при производстве широкого круга товаров различного назначения. Так, более 50% всего объема диоксида титана идет на изготовление товаров лакокрасочной отрасли (титановые белила), поскольку диоксид обладает отличными красящими свойствами. Это: краски (глянцевые, матовые и полуматовые, силикатные, кремнийорганические, порошковые, эмульсионные и с наполнителями для разнообразных строительных, ремонтных и промышленных работ, печати), лаки и эмали, смеси и растворы для грунтования, шпаклевки, штукатурки, цементирования, а также полиуретановые и эпоксидные покрытия, в том числе и для древесины. Диоксид, как и металл, белого цвета, поэтому используется он в качестве пигмента. Главное его достоинство – нетоксичность и безвредность. Кроме того, покрытия приобретают высокую стойкость к воздействиям ультрафиолета, не желтеют и практически не стареют.

Более 20% объема производства двуокиси титана потребляется для изготовления пластических масс и изделий на их основе с высокими термическими свойствами (к примеру, оконный пластик, различная мебель, предметы быта, детали автомобилей, машин и техники), а также каучука, линолеума и резины. Здесь он выступает в роли наполнителя, обеспечивая стойкость изделий и поверхностей к изменениям светопогоды, сопротивление при смене среды, защиту от агрессивных факторов.

Около 14% используется при производстве бумаги (белой, цветной, пропитанной), картона, обоев. Диоксид титана играет важную роль при пигментовании. Для придания бумаге гладкости, белости и высоких свойств при печати на поверхность наносят диоксид или его смеси с другими пигментами.

Диоксид титана химической чистоты 99,9998% применяется при производстве оптоволоконных изделий, медицинского оборудования, в радиоэлектронной промышленности. При изготовлении сверхчистых стекол диоксид служит эталоном чистоты. Также он незаменим при выработке термостойкого и оптического стекла, как огнеупорное защитное покрытие при сварочных работах. При производстве керамики диоксид используется для придания максимальной белости черепку либо же эмали (ангобам).

Известно применение оксида титана в косметической отрасли, в частности для усиления свойств солнцезащитных средств, отбеливающих возможностей различных кремов и пр. Упаковочные материалы с использованием диоксида титана играют важную роль при транспортировке и хранении нестойких к солнечному свету продуктов. В пищевой промышленности диоксид используют для отбеливания таких продуктов, как рыбные фарши и полуфабрикаты, белое мясо (кальмар, курица), сахар-рафинад, жевательные резинки, драже и т. д. При этом, конечно же, регламентируется максимальная концентрация диоксида в массе продукта.

Также соединение может использоваться как катализатор в химическом и фармацевтическом производстве для получения специфических промежуточных продуктов.

В целом, для каждого производства нормируется чистота диоксида, количество и характер примесей, допустимые массовые концентрации и другие показатели. Производство и потребление диоксида титана на сегодня является одним из показателей развития экономики.

Что такое двуокись титана?

Оксид титана(IV), диоксид титана, двуокись титана

амфотерный оксид четырехвалентного титана. Является основным продуктом титановой индустрии (на производство чистого титана идет лишь около 5 % титановой руды).

Техническое описание.

Чистый диоксид титана (TiO 2) - это бесцветное твердое кристаллическое вещество. Несмотря на бесцветность, в больших количествах диоксид титана чрезвычайно эффективный белый пигмент, если он хорошо очищен. TiO 2 практически не поглощает никакого падающего света в видимой области спектра. Свет или передается, или преломляется через кристалл или же отражается на поверхностях. TiO 2 - это стабильное (самый стабильное из всех известных белых пигментов), нелетучее, нерастворимое в кислотах, щелочах и растворах при нормальных условиях вещество. Двуокись титана отличается высокой реакционной устойчивостью к различным соединениям, в том числе и к токсичным, содержащимся в воздушной среде. Из-за своей инертности, диоксид титана не токсичен и, в общем, считается очень безопасным веществом. Он может контактировать с продуктами в упаковке, а в определенных концентрациях его можно использовать и как пищевой краситель.
Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.

Пигментный диоксид титана существуют в двух формах - анатазная и рутильная и производится по двум технологическим схемам: сульфатный и хлорный способы. Обе формы могут быть произведены любым из способов.
По сравнению с сульфатным хлорный способ является более экологически чистым и совершенным благодаря возможности осуществлять процесс в непрерывном режиме, что предполагает полную автоматизацию производства. Однако хлорный способ избирателен к сырью, а в связи с использованием хлора и высоких температур требует применения коррозионностойкого оборудования.
Двуокись титана, TiO 2 , - соединение титана с кислородом, в котором титан четырехвалентен. Белый порошок, желтый в нагретом состоянии. Встречается в природе главным образом в виде минерала рутила. Температура плавления - 1855° С, температура кипения - 2500-3000° C. Плотность 3,9 - 4,25 г/см³. Практически нерастворима в щелочах и кислотах, за исключением HF. В концентрированной Н 2 SO 4 растворяется лишь при длительном нагревании. При сплавлении двуокиси титана с едкими или углекислыми щелочами образуются титанаты, которые легко гидролизуются с образованием на холоду ортотитановой кислоты (или гидрата) Ti(OH) 4 , легко растворимой в кислотах. При стоянии она переходит в мстатитановую кислоту (форма), имеющую микрокристаллическую структуру и растворимую лишь в горячей концентрированной серной и фтористоводородной кислотах. Большинство титанатов практически нерастворимы в воде.
Основные свойства двуокиси титана выражены сильнее кислотных, но соли, в которых титан является катионом, также в значительной мере гидролизуются с образованием двухвалентного радикала титанила TiO 2 +. Последний входит в состав солей в качестве катиона (например, сернокислый титанил TiOSO 4 .2H 2 O). Двуокись титана является одним из важнейших соединений титана, служит исходным материалом для получения других его соединений, а также частично металлического титана. Используется главным образом как минеральная краска, кроме того, как наполнитель в производстве резины и пластических металлов. Входит в состав тугоплавких стекол, глазурей, форфоровых масс. Из нее изготовляют искусственные драгоценные камни, босцветные и окрашенные.
TiO 2 - один из важнейших неорганических соединений, потребляемых современной промышленностью, уникальные свойства диоксида титана определяют уровень технического прогресса в различных секторах мировой экономики.
Диоксид титана пигментный является наиболее востребованным товаром на мировом рынке. Мировой объем его производства - 4,5 млн т.

Строение.

Оксид титана существует в виде нескольких модификаций. В природе встречаются кристаллы с тетрагональной сингонией (анатаз, рутил) и ромбической сингонией (брукит). Искусственно получены еще две модификации высокого давления - ромбическая IV и гексагональная V. Следует отметить, что брукит промышленно почти не производится и в природе встречается редко. Анатазная форма также существенно уступает по производству рутильной, так как хуже рассеивает свет и менее атмосферостойка.

Характеристики кристаллической решетки

При нагревании и анатаз, и брукит необратимо превращаются в рутил (температуры перехода соответственно 400-1000° C и около 750° C). Основой структур этих модификаций являются октаэдры TiO 6 , то есть каждый ион Ti 4+ окружен шестью ионами O 2- , а каждый ион O 2- окружен тремя ионами Ti 4+ . Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трем октаэдрам. В анатазе на один октаэдр приходятся 4 общих ребра, в рутиле - 2.

Нахождение в природе.

В чистом виде в природе встречается в виде минералов рутила, анатаза и брукита (по строению первые два имеют тетрагональную, а последний - ромбическую сингонию), причем основную часть составляет рутил.
Третье в мире по запасам рутила месторождение находится в Рассказовском районе Тамбовской области. Крупные месторождения находятся также в Чили (Cerro Bianco), канадской провинции Квебек, Сьерра-Леоне.

Рутил или анатаз?

TiO 2 - встречается в природе трех основных кристаллических формах: антаз, рутил и брукит, последний в природе встречаются редко и коммерческого интереса не представляет. Рутильный диоксид примерно на 30% лучше рассеивает свет (лучше укрывистость), чем анатазный, поэтому последний используется гораздо реже. К тому же, анатаз менее атмосферостоек, чем рутил. Анатаз гораздо хуже работает в защите полимера (акрилата, пластмассы) от УФ лучей и приводит к фотокатализу (разрушению материала под воздействием солнечного света) и потере свойств полимера (происходит деструкция, выцветание, меление и т.д.). Таким образом, именно рутильная форма диоксида титана является единственным и безальтернативным белым пигментом в стандартных областях промышленности (краски, пластмассы, бумага) для придания белизны, укрывистости (кол-во пигмента в граммах, чтобы укрыть 1 кв. м. контрастной поверхности) и стабильности системе пигмент + носитель. Единственное обоснованное применение анатазного титана - это краски для дорожной разметки. В данном типе карски проявляются некоторые специфические свойства данной формы.

Свойства и технологии.

Диоксид титана широко применяется при производстве изделий из полимеров. Данный материал давно известен как отличный белый пигмент, и именно в этом качестве он знаком большинству людей…
Вместе с тем, диоксид титана привнес в полимерную промышленность не только возможность получать сверкающие белизной поверхности. По своей природе, диоксид титана является фотоактивным материалом, и как раз эта способность взаимодействовать со светом придает ему особую ценность. Так, например, подобное взаимодействие может принимать форму обычного рассеяния света, что обеспечивает непрозрачность материала, или форму поглощения энергии ультрафиолетового спектра света, что защищает полимер от деструкции под воздействием ультрафиолетового излучения. Эффект взаимодействия частиц диоксида титана со светом продолжает находить на практике все более широкое применение.
На фоне появления самых различных вариантов практического применения диоксида титана его пигментные свойства продолжают сохранять наипервейшую значимость. Диоксид титана считается в полимерной промышленности основным белым пигментом. Он широко используется, поскольку эффективно рассеивает видимый свет, придавая тем самым пластиковому продукту, в котором он содержится, белизну, яркость и непрозрачность. Вещество химически инертно, не растворяется в полимерах и отличается высокой термостойкостью при самых жестких условиях обработки. Промышленный диоксид титана поставляется в виде двух кристаллических модификаций, именуемых анатаз и рутил. При выборе между ними предпочтение отдается рутиловым пигментам, поскольку они лучше рассеивают свет, более устойчивы и в меньшей степени способствуют фотодеструкции.
Практически отсутствуют промышленно выпускаемые пигменты, изготавливаемые из чистого диоксида титана. Большинство из них имеют неорганическую, а в некоторых случаях органическую обработку, наносимую на поверхность частиц TiO 2 путем осаждения, механического перемешивания или каким-либо другим способом. Подобные способы поверхностной обработки приводят к улучшению одного, а то и нескольких эксплуатационных свойств пигмента, к которым можно отнести легкость диспергирования, устойчивость к атмосферным воздействиям или цветостойкость. Пока еще не найден универсальный способ поверхностной обработки, который бы позволял получать пигмент, максимально пригодный для любых практических применений, так что цель непрекращающихся исследований - продолжать разрабатывать новые марки диоксида титана, которые бы отвечали непрерывно изменяющимся требованиям индустрии пластмасс.
Светорассеивающие свойства: диоксид титана обеспечивает укрывистость путем рассеивания светаВ отличие от цветных пигментов, которые обеспечивают укрывистость за счет поглощения определенных длин волн видимого спектра света, диоксид титана и прочие белые пигменты достигают этого путем рассеивания света. Эффект рассеивания в этом случае возможен благодаря тому, что белый пигмент преломляет свет. Если в композиции достаточное количество пигмента, то весь свет, падающий на ее поверхность, за исключением малой части, которая поглощается полимером или пигментом, рассеется вовне, и композиция будет смотреться белой и непрозрачной. Рассеяние света сопровождается преломлением и дифракцией световых лучей при их прохождении через частицы пигмента или вблизи них.

Физические и термодинамическе свойства.

Чистый диоксид титана - бесцветные кристаллы, которые желтеют при нагревании, но обесцвечиваются после охлаждения. Известен в виде нескольких модификаций. Кроме рутила (кубическая сингония), анатаза (тетрагональная сингония) и брукита (ромбическая сингония), получены две модификации высокого давления: ромбическая IV и гексагональная V. Брукит при всех условиях метастабилен. При нагревании анатаз и брукит необратимо превращаются в рутил соответственно при 400-1000° С и ~750° С. Как в рутиле, так и в анатазе каждый атом Ti находится в центре октаэдра и окружен 6 атомами кислорода. Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трем октаэдрам. В анатазе на 1 октаэдр приходятся 4 общих ребра, в рутиле - 2.
Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твердость (абразивность), показатель преломления (2,55 - у анатаза и 2,7 - у рутила), диэлектрическая постоянная. Диоксид титана не растворяется в воде и разбавленных минеральных кислотах (кроме плавиковой) и разбавленных растворах щелочей.
Для технических целей применяется в раздробленном состоянии, представляя собой белый порошок. Гидроксид TiO 2 xnH 2 O в зависимости от условий его осаждения может содержать переменное число связанных с титаном ОН-групп. Полученный при невысоких температурах TiO 2 xnH 2 O (альфа-форма) хорошо растворяется в разбавленных минеральных и сильных органических кислотах, но практически не растворяется в растворах щелочей, легко пептизируется с образованием устойчивых коллоидных растворов. После сушки на воздухе образует белый порошок плотностью 2,6 г/см³, приближающийся по составу к формуле TiO 2 x2H 2 O (метатитановая кислота).
Диоксид титана широко применяется в качестве белого пигмента в лакокрасочной промышленности, в целлюлозно-бумажной промышленности, в производстве синтетических волокон, пластмасс, резиновых изделий, в производстве керамических диэлектриков, термостойкого и оптического стекла, белой эмали, в качестве компонента обмазки электродов для электросварки и покрытий литейных форм.
Температура плавления для рутила - 1870° C (по другим данным - 1850° C, 1855° C).
Температура кипения для рутила - 2500° C.
Плотность при 20° C:
для рутила 4,235 г/см³;
для анатаза 4,05 г/см³ (3,95 г/см³);
для брукита 4,1 г/см³.
Температура разложения для рутила 2900° C.
Температура плавления, кипения и разложения для других модификаций не указана, т.к. они переходят в рутильную форму при нагревании (см. выше).

Средняя изобарная теплоемкость C p (Дж/моль.К) Термодинамические свойства

Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твердость (абразивность), показатель преломления (2,55 - у анатаза и 2,7 - у рутила), диэлектрическая постоянная.

Химические свойства.

Диоксид титана амфотерен, то есть проявляет как основные, так и кислотные свойства (хотя реагирует главным образом с концентрированными кислотами).
Медленно растворяется в концентированной серной кислоте, образуя соответствующие соли четырехвалентного титана:
TiO 2 + 2H 2 SO 4 → Ti(SO 4) 2 + 2H 2 O.
В концентрированных растворах щелочей или при сплавлении с ними образуются титанаты - соли титановой кислоты (амфотерного гидроксида титана TiO(OH) 2):
TiO 2 + 2NaOH → Na 2 TiO 3 + H 2 O.
То же происходит и в концентрированных растворах карбонатов или гидрокарбонатов:
TiO 2 + K 2 CO 3 → K 2 TiO 3 + CO 2 TiO 2 + 2KHCO 3 → K 2 TiO 3 + 2CO 2 + H 2 O.
C перекисью водорода дает ортотитановую кислоту:
TiO 2 + 2H 2 O 2 → H 4 TiO 4 + О 2 .
При нагревании с аммиаком дает нитрид титана:
2TiO 2 + 4NH 3 →(t) 4TiN + 6H 2 O + O 2 .
При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:
TiO 2 + BaO → BaO.TiO 2
TiO 2 + BaCO 3 → BaO.TiO 2 + CO 2
TiO 2 + Ba(OH) 2 → BaO.TiO 2 + H 2 O.
При нагревании восстанавливается углеродом и активными металлами (Mg, Ca, Na) до низших оксидов. При нагревании с хлором в присутствии восстановителей (углерода) образует тетрахлорид титана. Нагревание до 2200° C приводит сначала к отщеплению кислорода с образованием синего Ti 3 O 5 (то есть TiO 2 .Ti 2 O 3), а затем и темно-фиолетового Ti 2 O 3 .
Гидратированный диоксид TiO 2 nH 2 O [гидроксид титана(IV), оксо-гидрат титана, оксогидроксид титана] в зависимости от условий получения может содержать переменные количества связанных с Ti групп ОН, структурную воду, кислотные остатки и адсорбированные катионы. Полученный на холоде свежеосажденный TiO 2 .nH 2 O хорошо растворяется в разбавленных минеральных и сильных органических кислотах, но почти не растворяется в растворах щелочей. Легко пептизируется с образованием устойчивых коллоидных растворов. При высушивании на воздухе образует объемистый белый порошок плотностью 2,6 г/см³, приближающийся по составу к формуле TiO 2 .2H 2 O (ортотитановая кислота). При нагревании и длительной сушке в вакууме постепенно обезвоживается, приближаясь по составу к формуле TiO 2 H 2 O (метатитановая кислота). Осадки такого состава получаются при осаждении из горячих растворов, при взаимодействии металлического титана с HNO 3 и т. п. Их плотность ~ 3,2 г/см³ и выше. Они практически не растворяются в разбавленных кислотах, не способны пептизироваться.
При старении осадки TiO 2 .nH 2 O постепенно превращается в безводный диоксид, удерживающий в связанном состоянии адсорбированные катионы и анионы. Старение ускоряется кипячением суспензии с водой. Структура образующегося при старении TiO 2 определяется условиями осаждения. При осаждении аммиаком из солянокислых растворов при рН

Оптические свойства.

Главное свойство титана как пигмента - придавать яркий белый цвет носителю, куда он вносится. Цвет определяется в системе цветов Lab, где L - яркость цвета, а - краснота/зелень, b - желтизна/голубизна. В этой системе можно задать любой цвет. Поскольку диоксид титана белый либо бело-желтый пигмент, то обычно указывается только координаты L и b. На цвет конечного продукта помимо основных параметров очистки также влияет размер частиц. Так, например, среднеразмерные и крупнорзамерные диоксиды титана (от 25 нм) показывают высокую укрывистость и кроющую силу при содержании пигмента в связующем 15-30%. Данная концентрация стандартная величина для большинства красок. При концентрации пигмента 10%, как например, в пластиках, мелкие частицы диоксида титана обеспечивают хорошую укрывистость и кроющую силу.
Научное обоснование феномена.
Так как рутиловые пигменты абсорбируют излучение в ультрафиолетовой и коротковолновой области света, то появляются незначительная нехватка отраженного коротковолнового синего света, что приводит к легкому желтому оттенку. Смещая гранулометрический состав пигмента в сторону более мелких частиц, можно компенсировать это эффект. Можно также получить голубоватый оттенок в серых и цветных красках за счет создания более узкого диапазона размера частиц.

Токсические свойства и физиологическое действие.

TLV (предельная пороговая концентрация, США): как TWA (среднесменная концентрация, США) 10 мг/м³ A4 (ACGIH 2001).

ООН - 2546.
Будучи химически инертным, диоксид титана является малоопасным веществом. В организм может поступать в виде аэрозоля при вдыхании или при приеме внутрь.
ПДК в воздухе рабочей зоны - 10 мг/м³ (1998).
Молекулярная масса: 79.9.

Виды опасности Симптомы Предупреждение Первая помощь
Пожарная опасность Не горюче. В случае возгорания в окрестностях: разрешены все средства пожаротушения.
Взрывоопасность Не допускать рассеивания пыли! Смачивание поверхности.
При вдыхании Неприятные ощущения. Местная вытяжная вентиляция или защита органов дыхания (фильтрующий респиратор P1). Свежий воздух, покой.
При попадании на кожу Ополоснуть и затем промыть кожу водой с мылом.
При попадании в глаза Покраснение. Защитные очки Вначале промыть большим количеством воды в течение нескольких минут (снять контактные линзы, если это не трудно), затем доставить к врачу.
При проглатывании Не принимать пищу, не пить и не курить во время работы. Прополоскать рот.

Пигменты диоксида титана рутильной и анатазной формы.

TiO 2 - полиморфен и встречается в трех основных кристаллических формах. Существуют три формы, анатаз (октаэдрит), рутил и брукит, последний в природе встречаются редко и, хотя эту форму и готовят в лабораториях, коммерческого интереса она не представляет.
Рутильный диоксид примерно на 30% лучше рассеивает свет (укрывистость), чем анатазный, поэтому последний используется гораздо реже. К тому же, анатаз менее атмосферостоек, чем рутил.
Анатаз гораздо хуже работает в защите полимера (акрилата, пластмассы) от УФ лучей и приводит к фотокатализу и потере свойств полимера (происходит деструкция, выцветание, меление и т.д.).
Пигменты диоксида титана производятся по двум технологическим схемам: сульфатный и хлорный способы. Обе, анатазная и рутильная формы диоксида титана, могут быть произведены любым из способов.

Технические характеристики.
Сульфатный способ был внедрен в промышленность в 1931 г., для производства анатазной формы диоксида титана, а позже, в 1941 г. - рутильной. В этом способе руда, содержащая титан (ильменит и др.), растворяется в серной кислоте, образуя растворы сульфатов титана, железа и других металлов. Затем, в ряде химических реакций, включающих в себя химическое восстановление, очистку, осаждение, промывание и кальцинацию, образовывая базовый диоксид титана с необходимым размером частиц. Строение кристаллов (анатазная или рутильная форма) контролируется в процессе ядрообразования и кальцинации.
Хлорный способ был изобретен в 1950 г. для производства рутильной формы диоксида титана. Титансодержащая руда вступает в реакцию с хлорным газом при пониженном давлении, в результате чего образуется тетрахлорид титана TiCl4 и примеси хлоридов других металлов, которые впоследствии удаляются. TiCl4 высокой степени чистоты затем окисляют при высокой температуре, в результате чего образуется диоксид титана.

Диоксид титана как оболочковый пигмент.

Результат помола TiO 2 + наполнитель:

Оболочковый пигмент - композиционный материал, состоящий из частиц оптически нейтрального наполнителя покрытых слоем пигмента. Пигментный слой часто покрывается защитной пленкой для улучшения физических и химических характеристик.
Может быть получен при помощи обработки в механоактиваторах частиц наполнителя совместно с пигментом-цветоносителем, химическими модификаторами и поверхностно-активными веществами.
Состав белого оболочкового пигмента:
- наполнители: минералы природного или искусственного происхождения, например - волластонит, кальцит;
- пигмент: оксид титана;
- защитный слой: оксиды кремния, алюминия, циркония, церия и др.
Применение: Пигменты используются в лакокрасочной, строительной, полимерной, резинотехнической и других отраслях промышленности.

Области применения.


Диоксид титана используется в производстве широкого круга товаров различного назначения.
- Производство лакокрасочных материалов, в частности, титановых белил - 57% от всего потребления (диоксид титана рутильной модификации обладает более высокими пигментными свойствами - светостойкостью, разбеливающей способностью и др.), поскольку диоксид обладает отличными красящими свойствами. Это: краски (глянцевые, матовые и полуматовые, силикатные, кремнийорганические, порошковые, эмульсионные и с наполнителями для разнообразных строительных, ремонтных и промышленных работ, печати), лаки и эмали, смеси и растворы для грунтования, шпаклевки, штукатурки, цементирования, а также полиуретановые и эпоксидные покрытия, в том числе и для древесины. Диоксид, как и металл, белого цвета, поэтому используется он в качестве пигмента. Главное его достоинство - нетоксичность и безвредность. Кроме того, покрытия приобретают высокую стойкость к воздействиям ультрафиолета, не желтеют и практически не стареют.
- Более 20% объема производства двуокиси титана потребляется для изготовления пластических масс и изделий на их основе с высокими термическими свойствами (к примеру, оконный пластик, различная мебель, предметы быта, детали автомобилей, машин и техники), а также каучука, линолеума и резины. Здесь он выступает в роли наполнителя, обеспечивая стойкость изделий и поверхностей к изменениям светопогоды, сопротивление при смене среды, защиту от агрессивных факторов.
- Около 14% используется при производстве бумаги (белой, цветной, пропитанной), картона, обоев. Диоксид титана играет важную роль при пигментовании. Для придания бумаге гладкости, белости и высоких свойств при печати на поверхность наносят диоксид или его смеси с другими пигментами.
По различным прогнозам в ближайшее время наиболее высокими темпами будет расти потребление двуокиси титана для производства ламинированных сортов бумаги - примерно на 5-6% в год и пластмасс - 4%. При этом в производстве л/к материалов прирост хоть и будет, но в меньшей степени - всего 1,8-2% в год.

Другие области применения диоксида титана:
- Синтетические волокна и ткани: для матирования скрученного волокна.
- Косметика: для защиты от ультрафиолетовой радиации в солнцезащитных кремах, для придания высокого отбеливающего и укрывистостного заглушающего эффекта зубной пасте, мылу и т.д.
- Пищевая промышленность: для придания высокого отбеливающего и укрывистостного эффекта продуктам, для защиты цвета и упаковки (пластик) продуктов от ультрафиолетового излучения.
- Фармацевтическая промышленность: пигментный диоксид титана, высокой химической чистоты, для придания высокого отбеливающего и укрывистосного эффекта в фармацевтике.
- Печатная краска: для повышения стойкости покрытий к атмосферным воздействиям.
- Катализатор: диоксид титана может быть использован как катализатор, как фотокатализатор и как инертный базовый керамический материал для активных компонентов.
- Нанотехнологии: нанопорошки диоксида титана, использование диоксида титана для очистки воздуха в городах, бумага из нановолокна на основе диоксида титана, водородная энергетика и др.
- В производстве резиновых изделий, стекольном производстве (термостойкое и оптическое стекло), как огнеупор (обмазка сварочных электродов и покрытий литейных форм), в косметических средствах (мыло и т.д.), в пищевой промышленности (пищевая добавка E171).
Диоксид титана выступает в роли наполнителя, обеспечивая стойкость изделий и поверхностей к изменениям светопогоды, сопротивление при смене среды, защиту от агрессивных факторов.

Диоксид титана (двуокись) находит широчайшее применение как пигмент в лакокрасочной промышленности (титановые белила), в производстве бумаги, синтетических волокон, пластмасс, резиновых изделий, керамических диэлектриков, белой эмали, термостойкого и оптического стекла (в т.ч. для волоконной оптики), пищевых продуктов, лекарственных препаратов и косметических изделий (помады, лака для ногтей, тени для век и т.д.).
Двуокись титана входит в состав фарфоровых масс, тугоплавких стекол, керамических материалов с высокой диэлектрической проницаемостью.
Диоксид титана химической чистоты 99,9998% применяется при производстве оптоволоконных изделий, медицинского оборудования, в радиоэлектронной промышленности. При изготовлении сверхчистых стекол диоксид служит эталоном чистоты. Также он незаменим при выработке термостойкого и оптического стекла, как огнеупорное защитное покрытие при сварочных работах. При производстве керамики диоксид используется для придания максимальной белости черепку либо же эмали (ангобам).
Другие сферы использования: предохранение древесины (повышение атмосферостойкости с помощью оптической фильтрации вредной для древесины солнечной радиации), наполнение резины, стеклянных эмалей, стекла и стеклянной керамики, электрокерамики, очистка воздуха, сварочные флюксы, твердые сплавы, химические промежуточные соединения, материалы, содержащие диоксид титана, подходящих для использования при высоких температурах (например, противопожарная защита печей с форсированной тягой), аналитическая и опытная хроматография жидкостей.
Отдельно следует отметить диоксид титана чистотой 99,999% марки ОСЧ 7-5 (ТУ-б-09-01-640-84), который применяется в качестве эталона чистоты, в производстве оптически прозрачных стекол, в волоконной оптике, радиоэлектронике, для пьезокерамики, в медицинской промышленности и т.д. Это особо чистое химическое вещество, полученное методом термического гидролиза.
Для удовлетворения различных потребностей, описанных выше, TiO 2 применяют в различных фракциях, чьи характеристики специально адаптированы для соответствующего использования. В зависимости от применения, используют кристаллы различных форм (рутил и анатаз), размер частиц, а так же не и/или органическую обработку поверхностей.

Использование диоксида титана в лакокрасочных материалах (ЛКМ).

Вследствие очень высокой белизны тонкодисперсного диоксида титана он нашел широкое применение в качестве белого пигмента в лакокрасочной промышленности. В числе его преимуществ: нетоксичность, высокие оптические характеристики (способность к рассеиванию света), доступность, химическая инертность, атмосферостойкость и др. В далеком прошлом остались краски, приготовляемые с использованием цинковых или свинецсодержащих белых пигментов.
Итак, основной функцией диоксида титана в красках является придание им белого цвета. Есть, однако, у двуокиси титана TiO 2 и конкуренты в этом отношении. Это, прежде всего, мел и мраморный кальцит (CaCO 3). Оба этих пигмента тоже имеют белый цвет и по цене более доступны, чем диоксид титана. Именно поэтому большинство красок содержит не один пигмент, а их смесь.
В общем случае, чем больше диоксида титана в краске, тем она белее, тем выше ее укрывистость, но, обычно, и выше цена по сравнению с краской, где больше мела или мраморного кальцита и меньше диоксида титана. В соответствующей литературе можно встретить рекомендации по частичной замене двуокиси титана на тальк и окись алюминия. Впрочем, это тоже компромиссные решения, диктуемые экономическими соображениями.

Диоксид титана в пищевой промышленности.

Использование диоксида титана в пищевой промышленности очень многогранно. Двуокись титана (Е171) можно использовать практически в любых продуктах, которым для эстетического вида необходим белый цвет в дозировке 0,1 - 1%. О сферах использования мы зачастую узнаем от наших клиентов. Вот некоторые из них: карамель, жевательная резинка, сахар пудра и рафинад, лягушачьи лапки, курица, свиные и говяжьи языки, молочные поросята, мука, тесто, сахарная глазурь, джемы, молочные коктейли, брынза, сыворотка, сгущеное молоко, любая рыбо и морепродукция и т.д.
Применение в рыбоперерабатывающей промышленности: используется для отбеливания всех сортов рыбного фарша, филе, полуфабрикатов, сурими, паштетов и других продуктов (например кальмаров, мяса криля, рыбных отходов, крабовых палочек и пр.) при дозировке от 0,1 до 1%, в зависимости от степени отбеливания.
Окрашивание фарша:
Вносится в фарш на начальном этапе, лучше одновременно с фосфатами. В этом случае, кроме отбеливания, фарш сохранит влагу.
Окрашивание филе:
Для отбеливания филе, его погружают в водный раствор диоксида титана. Дозировка диоксида титана 25-50 гр на 100 кг объема (вода+сырье). В состав рассола должна входить соль (в небольшом количестве). Время выдержки в рассоле в среднем 20-30 минут. Для плохо поддающегося отбеливанию сырья диоксид титана развести в подходящей емкости небольшим количеством воды, хорошо перемешать, дать отстояться 40-60 минут и слить излишек воды. Филе погрузить в концентрированный рассол на 30-60 секунд, дать стечь излишкам раствора и слегка ополоснуть в промывочной емкости. Раствор пригоден для многократного использования в течение нескольких дней при условии добавления в него антисептиков, препятствующих развитию микрофлоры.

Технологии получения диоксида титана.

В зависимости от специфики строения кристаллической решетки диоксид титана в природе встречается в нескольких модификациях: кубическая сингония (рутил), тетрагональная сингония (анатаз) и реже - ромбическая сингония (брукит). При добывании в основном получают модификации анатаз и рутил двумя методами: сульфатным или хлоридным.
Пигментный диоксид титана (TiO 2) производится из титансодержащих концентратов хлоридным и сульфатным способами. По хлоридному способу (52% мировых мощностей по производству диоксида титана) рутил (природный или синтетический и так называемый «хлоридный» шлак) переводится в тетрахлорид титана TiCl 4 хлорированием в присутствии нефтяного кокса. В сульфатном процессе (48% мировых мощностей) ильменитовый концентрат или титановый шлак разлагается серной кислотой. Рутильный пигмент может изготавливаться любым способом, в то время как анатазный пигмент может изготавливаться только сульфатным способом. В тетрахлоридном методе TiCl 4 либо гидролизуют до гидроксида в жидкой фазе c последующей термообработкой выпавшего осадка, либо проводят гидролиз в парах воды, или же сжигают в токе кислорода.
Хлоридный метод проще сульфатного. Существуют три разновидности хлоридного метода получения диоксида. Соль титана гидролизируют в воде, а затем нерастворимый осадок гидроксида титана подвергают термическому воздействию для получения оксида титана. Можно проводить реакцию гидролиза при помощи водного пара и пара тетрахлоридной соли титана при температуре не ниже 1000 градусов, при этом диоксид приобретает свойства пигмента.
Третий способ состоит в сжигании хлорида титана в кислородной атмосфере.
Чаще всего исходным материалом для получения диоксида титана сульфатным методом служит ильменит - природная смесь различных оксидов, в основном четырехвалентного титана и трехвалентного ферума. При хлоридном методе исходным сырьем является хлоридная соль четырехвалентного металлического титана. Эти два метода позволяют добывать пигмент диоксид титана обеих модификаций.
Ильменитный метод состоит в обработке ильменитового концентрата серной кислотой. Полученный раствор сульфата титана (IV) очищают и обрабатывают раствором гидроксида натрия, в результате чего получается осадок гидроксида титана (IV). Осадок в дальнейшем подвергают термообработке.
Сульфатный метод был внедрен в производство в 1931 г., начавшись с выпуска анатазной формы Ti02, а позднее (1941 г.) было освоено изготовление рутила. При этой технологии руда, содержащая титан, растворяется в серной кислоте с образованием раствора сульфатов титана, железа и других металлов. Затем в результате выполнения последовательности операций, включающих химическое восстановление, очистку, осаждение, промывку и прокаливание, получают промежуточные фракции TiO 2 пигментного размера. Кристаллическая структура - анатаза или рутила - контролируется на этапах образования ядер кристаллизации и последующего прокаливания.
FeTiO 3 + 2H 2 SO 4 → TiOSO 4 + FeSO 4 + 2H 2 O TiOSO 4 + H 2 O → TiO 2 + H 2 SO 4 .
Хлоридный метод был разработан и внедрен в производство компанией DuPont в 1948 г., когда и начался выпуск рутильной модификации TiO 2 . Данный технологический процесс построен на двух высокотемпературных безводных парофазных реакциях. В условиях восстановления титановая руда взаимодействует с газообразным хлором с получением хлористого титана и побочных хлоридов других металлов, которые впоследствии отделяются. После этого прошедший тонкую очистку TiCI 4 окисляется при высокой температуре с получением промежуточной двуокиси титана высокой яркости. На этапе окисления в рамках хлорирования имеется возможность жестко контролировать распределение частиц по размерам, а также тип кристалла, что позволяет получать диоксид титана с отличными показателями по кроющей и разбеливающей способностям.
2FeTiO 3 + 7CI 2 + ЗС → 2TiCI 4 + 2FeCI 3 + 3CO 2 TiCI 4 + O 2 → TiO 2 + 2CI 2 .
В обоих технологических процессах - сульфатном и хлоридном - промежуточными продуктами являются скопления кристаллов TiO 2 пигментного размера, которые должны быть разделены (размельчены) для получения оптимальных оптических характеристик. В зависимости от требований конечного пользователя для модификации TiO 2 используются различные методы обработки, включая осаждение оксидов кремния, алюминия, циркония или цинка на поверхность пигментных фракций. С целью оптимизации рабочих характеристик для конкретных применений могут использоваться специальные методы обработки оксидами в водных или безводных средах или их различные комбинации. Кроме того, с помощью различных методов могут наноситься органические добавки с целью улучшения отдельных характеристик пигмента.
Важнейшим моментом для производства диоксида титана является поставка титановой руды. Хотя титан входит в десятку самых распространенных химических элементов на Земле, в природе он распространен в очень малых концентрациях. Так что для организации эффективной поставки титановой руды, которая смогла бы удовлетворить экономические потребности производства TiO 2 , необходимо внедрять рациональные методы добычи и обогащения этого минерала.

Производство хлорное или сульфатное?

Пигменты двуокиси титана производятся по двум технологическим схемам: сульфатный и хлорный способы. Обе, анатазная и рутильная формы диоксида титана, могут быть произведены любым из способов. Мировые мощности по производству диоксида титана хлорным способом превышают мощности сульфатного, и продолжают расти. Различия в техпроцессе заключаются в различных типах вещества для очистки титановой руды. При очистке серной кислотой (сульфатный процесс), частички примесей титановой руды образуют с серной кислотой соли, которые сложно в дальнейшем вычистить. При очистке хлором происходит сгорание примесей и конечный продукт получается более белым при прочих равных условиях.

Производство из ильменитового концентрата.


Исходным сырьем при производстве диоксида титана является ильменитовый концентрат.Ильменит - это руда, которая с химической точки зрения представляет собой смесь оксидов, большую часть из которых составляют оксиды титана и железа. Сульфатная технология производства двуокиси титана основана на обработке ильменита серной кислотой.
1). Ильменит измельчают, высушивают, а затем разлагают в концентрированной серной кислоте. Полученный плав титанилсульфата охлаждают и разбавляют водой до определенной концентрации. Затем восстанавливают в растворе титанилсульфата трехвалентное железо до двухвалентного. Полученный раствор отстаивают и подают на черную фильтрацию. В отфильтрованном растворе при охлаждении выкристаллизовывают железный купорос и отделяют его от маточного раствора на центрифугах. Далее раствор титанилсульфата упаривают до стандартной концентрации и отправляют его на гидролиз.
Во время следующего процесса, гидролиза, выделяются аморфные хлопья гидрата диоксида титана. Полученную пульпу гидрата диоксида титана подвергают фильтрации в две стадии, на которых осуществляется ее отмывка от хромофорных примесей и отбеливание. После добавления необходимых компонентов пасту гидрата диоксида титана прокаливают в прокалочных печах. В процессе прокаливания отщепляется гидратированная влага и полученной диоксида титана придаются пигментные свойства. Прокаленный продукт измельчается в две стадии и передается на поверхностную обработку. Поверхностную обработку ведут определенными химическими веществами для придания пигментному диоксиду титана определенных потребительских свойств. Обработанный пигментный диоксид титана сушат и передают на микроизмельчение. Измельченный готовый продукт упаковывают и передают на склад.
2). Технология производства состоит из трех этапов:
- Получение растворов сульфата титана (путем обработки ильменитовых концентратов серной кислотой). В результате получают смесь сульфата титана и сульфатов железа (II) и (III), последний восстанавливают металлическим железом до степени окисления железа +2. После восстановления на барабанных вакуум-фильтрах отделяют растворов сульфтов от шлама. Сульфат железа (II) отделяют в вакуум-кристаллизаторе.
- Гидролиз раствора сульфатных солей титана. Гидролиз проводят методом введения зародышей (их готовят осаждая Ti(OH) 4 из растворов сульфата титана гидроксидом натрия). На этапе гидролиза образующиеся частицы гидролизата (гидратов диоксида титана) обладают высокой адсорбционной способностью, особенно по отношению к солям Fe3+, именно по этой причине на предыдущей стадии трехвалентное железо восстанавливается до двухвалентного. Варьируя условия проведения гидролиза (концентрацию, длительность стадий, количество зародышей, кислотность и т. п.) можно добиться выхода частиц гидролизата с заданными свойствами, в зависимости от предполагаемого применения.
- Термообработка гидратов диоксида титана. На этом этапе, варьируя температуру сушки и используя добавки (такие, как оксид цинка, хлорид титана и используя другие методы можно провести рутилизацию (то есть перестройку оксида титана в рутильную модификацию). Для термообработки используют вращающиеся барабанные печи длиной 40-60 м. При термообработке испаряется вода (гидроксид титана и гидраты оксида титана переходят в форму диоксида титана), а также диоксид серы.

). Искусственно получены ещё две модификации высокого давления - ромбическая IV и гексагональная V.

Характеристики кристаллической решётки
Модификация/Параметр Рутил Анатаз Брукит Ромбическая IV Гексагональная V
Параметры элементарной решётки, нм a 0,45929 0,3785 0,51447 0,4531 0,922
b - - 0,9184 0,5498 -
c 0,29591 0,9486 0,5145 0,4900 0,5685
Число формульных единиц в ячейке 2 4 8
Пространственная группа P4/mnm I4/amd Pbca Pbcn

При нагревании и анатаз, и брукит необратимо превращаются в рутил (температуры перехода соответственно 400-1000°C и около 750 °C). Основой структур этих модификаций являются октаэдры TiO 6 , то есть каждый ион Ti 4+ окружён шестью ионами O 2- , а каждый ион O 2- окружён тремя ионами Ti 4+ . Октаэдры расположены таким образом, что каждый ион кислорода принадлежит трём октаэдрам. В анатазе на один октаэдр приходятся 4 общих ребра, в рутиле - 2.

Нахождение в природе

В чистом виде в природе встречается в виде минералов рутила, анатаза и брукита (по строению первые два имеют тетрагональную, а последний - ромбическую сингонию), причём основную часть составляет рутил.

Свойства

Физические, термодинамическе свойства

Чистый диоксид титана - бесцветные кристаллы (желтеет при нагревании). Для технических целей применяется в раздробленном состоянии, представляя собой белый порошок. Не растворяется в воде и разбавленных минеральных кислотах (за исключением плавиковой).

  • Температура плавления для рутила - 1870 °C (по другим данным - 1850 °C, 1855 °C)
  • Температура кипения для рутила - 2500 °C.
  • Плотность при 20 °C:
для рутила 4,235 г/см 3 для анатаза 4,05 г/см 3 (3,95 г/см 3 ) для брукита 4,1 г/см 3

Температура плавления, кипения и разложения для других модификаций не указана, т.к. они переходят в рутильную форму при нагревании (см. ).

Вследствие более плотной упаковки ионов в кристалле рутила увеличивается их взаимное притяжение, снижается фотохимическая активность, увеличиваются твёрдость (абразивность), показатель преломления (2,55 - у анатаза и 2,7 - у рутила), диэлектрическая постоянная .

Химические свойства

Диоксид титана амфотерен, то есть проявляет как осно́вные, так и кислотные свойства (хотя реагирует главным образом с концентрированными кислотами).

Медленно растворяется в концентированной серной кислоте, образуя соответствующие соли четырёхвалентного титана:

2TiO 2 + 4NH 3 →(t) 4TiN + 6H 2 O + O 2

При сплавлении с оксидами, гидроксидами и карбонатами образуются титанаты и двойные оксиды:

Токсические свойства, физиологическое действие, опасные свойства

TLV(предельная пороговая концентрация, США): как TWA (среднесменная концентрация, США) 10 мг/м³ A4 (ACGIH 2001).

Добыча и производство

Полная статья получение оксида титана(IV)

Мировое производство диоксида титана на конец 2004 года достигло приблизительно 5 миллионов тонн.

Основными производители и экспортёры диоксида титана:

В последние годы чрезвычайно быстро растет производство диоксида титана в Китае.

В России пигментный диоксид титана не производят, но производят технические марки, используемые в металлургии. На территории СНГ диоксид титана производится на Украине предприятиями «Сумыхимпром», город Сумы , «Крымский титан», г. Армянск) и КП "Титано-магниевый комбинат" (г. Запорожье). Сумский государственный институт минеральных удобрений и пигментов (МИНДИП) в своих научно-исследовательских работах особое место уделяет технология получения оксида титана (IV) сульфатным способом: исследование, разработка новых марок, модернизация технологии и аппаратурного оформления процесса.

Как указано выше, диоксид титана встречается в виде минералов, однако этого источника недостаточно, поэтому значительная его часть производится. Существуют два основных промышленных метода получения TiO 2: из ильменитового (FeTiO 3) концентрата и из тетрахлорида титана.

Производство диоксида титана из ильменитового концентрата

Технология производства состоит из трёх этапов:

  • получение растворов сульфата титана (путём обработки ильменитовых концентратов серной кислотой). В результате получают смесь сульфата титана и сульфатов железа (II) и (III), последний восстанавливают металлическим железом до степени окисления железа +2. После восстановления на барабанных вакуум-фильтрах отделяют растворов сульфтов от шлама. Сульфат железа(II) отделяют в вакуум-кристаллизаторе.
  • гидролиз раствора сульфатных солей титана. Гидролиз проводят методом введения зародышей (их готовят осаждая Ti(OH) 4 из растворов сульфата титана гидроксидом натрия). На этапе гидролиза образующиеся частицы гидролизата (гидратов диоксида титана) обладают высокой адсорбционной способностью, особенно по отношению к солям Fe 3+ , именно по этой причине на предыдущей стадии трёхвалентное железо восстанавливается до двухвалентного. Варьируя условия проведения гидролиза (концентрацию, длительность стадий, количество зародышей, кислотность и т. п.) можно добиться выхода частиц гидролизата с заданными свойствами, в зависимости от предполагаемого применения.
  • термообработка гидратов диоксида титана. На этом этапе, варьируя температуру сушки и используя добавки (такие, как оксид цинка , хлорид титана и используя другие методы можно провести рутилизацию (то есть перестройку оксида титана в рутильную модификацию). Для термообработки используют вращающиеся барабанные печи длиной 40-60 м. При термообработке испаряется вода (гидроксид титана и гидраты оксида титана переходят в форму диоксида титана), а также диоксид серы .

Производство диоксида титана из тетрахлорида титана

Существуют три основных метода получения диоксида титана из его тетрахлорида:

  • гидролиз водных растворов тетрахлорида титана (с последующей термообработкой осадка)
  • парофазный гидролиз тетрахлорида титана (основан на взаимодействии паров тетрахлорида титана с парами воды). Процесс обычно ведётся при температуре 900-1000°C
  • термообработка тетрахлорида (сжигание в токе кислорода)

Применение

Основные применения диоксида титана:

Мировые мощности по производству пигментов на основе диоксида титана (тыс. тонн/год)
2001 г. 2002 г. 2003 г. 2004 г.
Америка 1730 1730 1730 1680
Запад. Европа 1440 1470 1480 1480
Япония 340 340 320 320
Австралия 180 200 200 200
Прочие страны 690 740 1200 1400
Всего 4380 4480 4930 5080

Другие применения - в производстве резиновых изделий, стекольном производстве (термостойкое и оптическое стекло), как огнеупор (обмазка сварочных электродов и покрытий литейных форм), в косметических средствах (мыло и т.д.), в пищевой промышленности (пищевая добавка E171 ).

Цены и рынок

Цены на диоксид титана отличаются в зависимости от степени чистоты и марки. Так, особо чистый (99,999 %) диоксид титана в рутильной и анатазной форме стоил в сентябре года 0,5-1 доллара за грамм (в зависимости от размера покупки), а технический диоксид титана - 2,2-4,8 доллара за килограмм в зависимости от марки и объёма покупки .

Нормативы

  • Двуокись титана пигментная. Технические условия ГОСТ 9808-84

В настоящее время диоксид титана по ГОСТ 9808-84 не выпускается.

  • Диоксид титана пигментный. ТУ У 24.1-05762329-001-2003

По данным техническим условиям работает ГАК "Титан" (г. Армянск).

  • Титана диоксид пигментный. ТУ У 24.1-05766356-054:2005

По данным техническим условиям работает ОАО "Сумыхимпром" (г. Сумы).

Использованная литература

  1. Б. В. Некрасов. Основы общей химии . Т. I изд. 3-е, испр. и доп. Изд-во «Химия», 1973 г. С. 644, 648
  2. Т. Г. Ахметов, Р. Т. Порфирьева, Л. Г. Гайсин и др. Химическая технология неорганических веществ : в 2 кн. Кн. 1 Под ред. Т. Г. Ахметова.-М.:Высшая школа, 2002 ISBN 5-06-004244-8 С. 369-402
  3. Химия : Справ. изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. 2-е изд., стереотип. - М.:Химия, 2000. С. 411
  4. Химическая энциклопедия (электронная версия) С. 593, 594

Ссылки

  • Мировой рынок пигментного диоксида титана Состояние, тенденции, прогнозы
  • TiO2 - Titanium Dioxide | Двуокись титана (диоксид титана) | Свойства, область применения, производители диоксида титана
  • Международная карта химической безопасности для диоксида титана
  • Titanium dioxide Информация из Химической базы данных Акронского университета

Примечания

  1. http://www.snab.ru/lkm2/01/03.pdf
  2. Химическая энциклопедия